Ανάπτυξη πρότυπου συστήματος για τη συσχέτιση της ιστολογικής δομής με τη μηχανική συμπεριφορά της αορτής

.....

ΣΚΟΠΟΣ Αντικείμενο της παρούσας εργασίας ήταν η ανάπτυξη πρότυπου συστήματος μελέτης της ιστομορφολογίας του αορτικού τοιχώματος, όταν το τελευταίο υποβάλλεται σε προεπιλεγμένα επίπεδα τάσης. ΥΛΙΚΟ-ΜΕ-ΘΟΔΟΣ Για τη μελέτη αυτή χρησιμοποιήθηκαν 10 λευκά αρσενικά κουνέλια Νέας Ζηλανδίας σωματικού βάρους 3.600 g. Με μέση στερνοτομή, παρασκευάστηκε, αποψιλώθηκε από τους γύρω ιστούς και αφαιρέθηκε η κατιούσα θωρακική αορτή. Ελήφθησαν επιμήκεις λωρίδες σταθερών διαστάσεων, οι οποίες υποβλήθηκαν σε μονοαξονικό εφελκυσμό στη συσκευή Vitrodyne V1000 Universal Tester. Στα δείγματα εφαρμόστηκαν διάφορα προεπιλεγμένα επίπεδα τάσης κατά τον επιμήκη άξονά τους. Ορισμένα από αυτά δεν υποβλήθηκαν σε μηχανική τάση και αποτέλεσαν δείγματα αναφοράς. Ακολούθησε μονιμοποίηση του ιστού υπό τάση σε διάλυμα Karnovski για τουλάχιστον 90 min, εμπέδωση σε παραφίνη και λήψη εγκαρσίων και επιμήκων τομών 5 μm. Χρησιμοποιήθηκε χρώση Verhoeff για την ανάδειξη της ελαστίνης και τρίχρωμη χρώση Masson για το κολλαγόνο. Η ιστολογική εξέταση έγινε σε φωτομικροσκόπιο Zeiss Axiolab. ΑΠΟΤΕΛΕΣΜΑΤΑ Οι καμπύλες τάσης-παραμόρφωσης και μέτρου ελαστικότητας-τάσης διαιρέθηκαν σε τρία μέρη, τα οποία αντιστοιχούσαν σε χαμηλές, φυσιολογικές και υψηλές τάσεις. Σε χαμηλά επίπεδα τάσεων, το μέτρο ελαστικότητας του αορτικού τοιχώματος ήταν παρεμφερές με αυτό της ελαστίνης, ενώ σε υψηλά επίπεδα με αυτό του κολλαγόνου. Στις επιμήκεις ιστολογικές τομές η μηχανική τάση προκάλεσε σταδιακή ευθυγράμμιση των ινών της ελαστίνης και των δεσμίδων του κολλαγόνου με την αύξηση των επιπέδων της. Ο κυματισμός της ελαστίνης και του κολλαγόνου δεν μεταβαλλόταν προϊούσης της επιμήκους εφαρμοζόμενης μηχανικής τάσης στις εγκάρσιες τομές. ΣΥΜΠΕΡΑΣΜΑΤΑ Στην παρούσα εργασία αναγνωρίζεται συσχέτιση των μορφολογικών μεταβολών, που επέρχονται στο τοίχωμα της αορτής, με το επίπεδο της ασκούμενης τάσης. Η μορφομετρική ανάλυση των αναδιατάξεων, που παρατηρούνται στο αορτικό τοίχωμα μετά από εφαρμογή τάσης, συμβάλλει στην πληρέστερη κατανόηση της μηχανικής συμπεριφοράς της αορτής. Η αναδιάταξη των ιστολογικών συστατικών της αορτής επιτυγχάνει τη βέλτιστη κατανομή των τάσεων εντός του τοιχώματός της και επεξηγεί τη συμβολή της στην ομοιοστασία του κυκλοφορικού συστήματος.

Η αορτή είναι ένα εξόχως σημαντικό αιμοδυναμικό όργανο, η δράση του οποίου δεν περιλαμβάνει μόνο την υποδοχή και μεταφορά του αίματος, που εξωθείται από την αριστερή κοιλία στη συστηματική κυκλοφορία.^{1.2} Συγκεκριμένα, μέσω της πολύπλοκης μηχανικής της APXEIA ΕΛΛΗΝΙΚΗΣ ΙΑΤΡΙΚΗΣ 2005, 22(1):54-65 ARCHIVES OF HELLENIC MEDICINE 2005, 22(1):54-65

Ε. Κεφαλογιάννης,¹
Δ.Π. Σοκόλης,²
Μ. Κουλούκουσα,³
Σ. Χαβάκη,³
Ε. Μαρίνος,³
Π.Ε. Καραγιαννάκος²

¹Εργαστήριο Πειραματικής Χειρουργικής και Χειρουργικής Έρευνας, Ιατρική Σχολή, Πανεπιστήμιο Αθηνών ²Εργαστήριο Εμβιομηχανικής, Ίδρυμα Ιατροβιολογικών Ερευνών, Ακαδημία Αθηνών ³Εργαστήριο Ιστολογίας και Εμβρυολογίας, Ιατρική Σχολή, Πανεπιστήμιο Αθηνών, Αθήνα

Model system development for correlation between histologic structure and mechanical behavior of the aorta

Abstract at the end of the article

Λέξεις ευρετηρίου

Ελαστικές ιδιότητες Ιστολογική δομή Μορφομετρία

> Υποβλήθηκε 5.12.2003 Εγκρίθηκε 11.5.2004

συμπεριφοράς, συμβάλλει ουσιαστικά στη διατήρηση της ομοιοστασίας του κυκλοφορικού συστήματος, καθορίzοντας τη λειτουργία της αριστερής κοιλίας, τη συνεχή ροή του αίματος διαμέσου των αρτηριδίων και, κατά συνέπεια, την αδιάλειπτη αιμάτωση των ιστών και των οργάνων του σώματος.

Έχει αποδειχθεί ότι η ηλικία αποτελεί σημαντικό παράγοντα μεταβολής της σχέσης τάσης-παραμόρφωσης

Η μελέτη επιχορηγήθηκε από το Ίδρυμα Ιατροβιολογικών Ερευνών της Ακαδημίας Αθηνών, το Υπουργείο Υγείας και την Ιατρική Σχολή του Πανεπιστημίου Αθηνών

της αορτής.³⁻⁶ Άλλοι παράγοντες που επηρεάzουν τη σχέση αυτή και τις λοιπές παραμέτρους της μηχανικής συμπεριφοράς της αορτής είναι η αθηρωμάτωση,⁶⁻⁹ η στεφανιαία νόσος,¹⁰⁻¹² η αρτηριακή υπέρταση^{1,13-15} και η καρδιακή ανεπάρκεια.¹ Η ενδελεχής μελέτη της σχέσης τάσης-παραμόρφωσης της αορτής αναμένεται να συντελέσει τα μέγιστα στην πληρέστερη κατανόηση και την αποτελεσματικότερη αντιμετώπιση των νόσων που την προσβάλλουν. Ως εκ τούτου, το ενδιαφέρον της επιστημονικής κοινότητας έχει στραφεί τα τελευταία χρόνια στη διερεύνηση των μηχανικών ιδιοτήτων του αορτικού τοιχώματος και η εμβιομηχανική της αορτής αποτελεί πλέον πεδίο συστηματικής επιστημονικής έρευνας.

Οι πρωτοποριακές για την εποχή τους μελέτες των Glagov et al¹⁶⁻²⁰ κατέδειξαν τη σημασία της ιστολογικής εξέτασης του αορτικού τοιχώματος σε διάφορα επίπεδα τάσης για την κατανόηση της μηχανικής του λειτουργίας. Παρόλα αυτά, οι ανωτέρω συγγραφείς δεν επιχείρησαν να διερευνήσουν την αλληλεξάρτηση της ιστολογικής δομής και της μηχανικής συμπεριφοράς του τοιχώματος της αορτής, η οποία παραμένει έως τώρα αδιευκρίνιστη.

Αντικείμενο της παρούσας εργασίας ήταν η ανάπτυξη πρότυπου συστήματος για την *in vitro* μελέτη των μεταβολών που επέρχονται στην ιστομορφολογία της αορτής, όταν αυτή υποβάλλεται σε προεπιλεγμένα επίπεδα τάσης. Η παρούσα δημοσίευση αποτελεί πρόδρομη ανακοίνωση της ερευνητικής μας προσπάθειας, η οποία αποσκοπεί μακροπρόθεσμα στη συσχέτιση της δομής με τη μηχανική συμπεριφορά του αορτικού τοιχώματος. Ειδικότερα, επιδιώκεται η συσχέτιση της ιστολογικής δομής με τη σχέση τάσης-παραμόρφωσης για ευρύ φάσμα τοιχωματικών τάσεων, που περιλαμβάνει από μηδενικές έως πολύ υψηλές τάσεις.

γλικό και μεθόδος

Υλικό και χειρουργικές διαδικασίες

Μελετήθηκαν 10 λευκά αρσενικά κουνέλια Νέας Ζηλανδίας, σωματικού βάρους 3.450-3.750 g. Οι συνθήκες στέγασης και χειρισμού των πειραματικών προτύπων ήταν σύμφωνες με τις κατευθυντήριες οδηγίες της Αμερικανικής Εταιρείας Φυσιολογίας και το Προεδρικό Διάταγμα 160/1991, με το οποίο εναρμονίστηκε η Ελλάδα στην Κοινοτική Οδηγία 609/ 1986.

Τα zωικά πρότυπα υποβλήθηκαν σε ευθανασία με ενδοφλέβια χορήγηση μεγάλων δόσεων νατριούχου θειοπεντάλης (Pentothal, Abbott SpA, Italy). Ακολούθησε μέση στερνοτομή, διάνοιξη του θώρακα και παρασκευή της κατιούσας θωρακικής αορτής από την αριστερή υποκλείδια αρτηρία μέχρι το διάφραγμα. Τοποθετήθηκαν ραφές (mersilk 5-0) κατά μήκος του αγγείου, στην έκφυση της αριστερής υποκλείδιας και της οπισθίας μεσοπλεύριας αρτηρίας, που αντιστοιχούσε στο 4ο διάστημα, και, τέλος, στο διάφραγμα.

Στη συνέχεια, η αορτή εξαιρέθηκε και αποψιλώθηκε με μεγάλη προσοχή από το χαλαρό περιαορτικό ιστό, αποφεύγοντας τον τραυματισμό του μέσου χιτώνα της. Κατά τη μεταγενέστερη ιστολογική εξέταση του αγγείου, ο έξω χιτώνας του ήταν εμφανής σε όλα τα αορτικά δείγματα, παρέχοντας επομένως σαφή απόδειξη ότι ο μέσος χιτώνας του είχε παραμείνει ανέπαφος. Η αορτή διανοίχθηκε κατά τον επιμήκη άξονά της και από τα τμήματα μεταξύ των ραφών ελήφθησαν επιμήκεις λωρίδες διαστάσεων 3,1×0,5 cm. Όλα τα δείγματα παρέμειναν σε διάλυμα φυσιολογικού ορού θερμοκρασίας δωματίου έως την πραγματοποίηση της μηχανικής ανάλυσης, εντός 12 ωρών από την αφαίρεσή τους.

Μηχανική ανάλυση

Η μέτρηση των μηχανικών ιδιοτήτων των αορτικών δειγμάτων έγινε στην πλήρως αυτοματοποιημένη συσκευή Vitrodyne V1000 Universal Tester (Liveco Inc, Burlington, VT, USA), όπως έχει προηγουμένως περιγραφεί από το Εργαστήριό μας.^{21,22} Η συσκευή αυτή (εικ. 1) έχει επιλεγεί ειδικά για την πραγματοποίηση μελετών μονοαξονικού εφελκυσμού σε βιολογικούς ιστούς. Για την καταγραφή της εντατικής κατάστασης των δειγμάτων φέρει δυναμοκυψέλη μέγιστου φορτίου 500 g και ευαισθησίας 0,25 g, ενώ έχει ενσωματωμένο μετρητή των μεταβο-

Εικόνα 1. Η πειραματική διάταξη, που χρησιμοποιήθηκε για τη μελέτη των μηχανικών ιδιοτήτων του αορτικού τοιχώματος, αποτελείται από τη συσκευή εφελκυσμού Vitrodyne V1000 και το συνοδό ηλεκτρονικό υπολογιστή, μέσω του οποίου γινόταν καταγραφή και επεξεργασία των δεδομένων. Η κάτω αρπάγη της συσκευής παρέμενε σταθερή, ενώ η άνω ήταν συνδεδεμένη με έμβολο, που επιμήκυνε τα δείγματα έως ένα σημείο, επαναφέροντάς τα στη συνέχεια στην αρχική τους θέση. Διακρίνεται η ειδική μικρομετρική συσκευή ακτίνων LASER, με την οποία προσδιορίστηκε το πάχος του αορτικού τοιχώματος.

λών του μήκους, ευαισθησίας 10 μm. Η συσκευή είναι συνδεδεμένη με ηλεκτρονικό υπολογιστή και με κατάλληλο λογισμικό (Material Witness v2.02, Liveco Inc, Burlington, VT, USA) παρέχεται η δυνατότητα αποθήκευσης των δεδομένων για περαιτέρω επεξεργασία. Η πειραματική διάταξη περιλαμβάνει και ειδική μικρομετρική συσκευή ακτίνων LASER ευαισθησίας 1 μm (Laser Beam Micrometer LS-3100, Keyence Corp, Osaka, Japan) για τον προσδιορισμό του πάχους του αορτικού τοιχώματος.

Δεδομένης της δυσμενούς επίδρασης της αφυδάτωσης στις μηχανικές ιδιότητες των ιστών, τα δείγματα ήταν εμβαπτισμένα σε υδατόλουτρο κατάλληλου pH και ελεγχόμενης θερμοκρασίας 37±1 °C (1130A, PolyScience, Niles, IL, USA), προκειμένου να διατηρούν την υγρασία τους.^{3-5,7-9,13-15,21-28} Με τη βοήθεια αντιολισθητικού χαρτιού, καθηλώθηκαν στις αρπάγες της συσκευής εφελκυσμού, αποφεύγοντας πιθανή ολίσθησή τους κατά τη διάρκεια της μελέτης του εφελκυσμού. Τυχόν μικροολισθήσεις δεν επηρέασαν τις μετρήσεις, επειδή τόσο το αρχικό μήκος όσο και οι τελικές παραμορφώσεις των δειγμάτων ήταν κατά πολύ μεγαλύτερες των πιθανών μικρών κινήσεών τους μέσα στις αρπάγες.

Η κάτω αρπάγη της συσκευής ήταν σταθερή, ενώ η άνω ήταν συνδεδεμένη με έμβολο, το οποίο ασκούσε εφελκυστικό φορτίο στα δείγματα κατά τον επιμήκη άξονά τους με ρυθμό 10 μm/sec. Κατά κανόνα, οι αρπάγες προκαλούν τοπική διαταραχή της κατανομής των τάσεων στην περιοχή της επαφής τους με το δείγμα. Σε μικρή όμως απόσταση από τις αρπάγες, η τάση είναι ομοιόμορφα κατανεμημένη σε όλη την επιφάνεια διατομής του δείγματος. Η ομοιόμορφη κατανομή της τάσης στον αορτικό ιστό εξασφαλίστηκε με επιλογή μεγάλου λόγου μήκους προς πλάτος των δειγμάτων.^{25,26,28}

Το πρωτόκολλο μελέτης της μηχανικής ανάλυσης περιελάμβανε αρχικά την προετοιμασία των αορτικών δειγμάτων, με σειρά δέκα μονοαξονικών εντατικών κύκλων με σταθερό τελικό επίπεδο επιμήκυνσης, ωσότου τα δεδομένα του ασκούμενου φορτίου έναντι της επιμήκυνσης να είναι καθόλα επαναλήψιμα.^{3-5,8,9,13-15,21-28} Η εν λόγω διαδικασία φόρτισης-αποφόρτισης έχει κριθεί στο παρελθόν ως απαραίτητη για την εξάλειψη των ιξωδοελαστικών φαινομένων.²³⁻²⁸ Οι μετρήσεις του τελευταίου κύκλου της προετοιμασίας θεωρήθηκαν ότι είναι αντιπροσωπευτικές των παθητικών ελαστικών ιδιοτήτων της αορτής, χωρίς την επίδραση του τόνου των λείων μυϊκών κυττάρων.^{3,5,9,27}

Μετά την προετοιμασία των δειγμάτων, καταγράφηκαν οι αρχικές τους διαστάσεις σε συνθήκες μηδενικού φορτίου (εικ. 2). Το αρχικό μήκος και πλάτος των δειγμάτων μετρήθηκε με υποδεκάμετρο, ενώ το αρχικό πάχος μέσω της συσκευής ακτίνων LASER. Το μήκος του δείγματος και το εφαρμοzόμενο εφελκυστικό φορτίο κατά τον επιμήκη άξονά του μετρήθηκε από την πειραματική διάταξη, με συχνότητα δειγματοληψίας 50 Hz. Οι μετρήσεις καταγράφηκαν στον υπολογιστή και μέσω του λογισμικού MicroCal Origin v.6.1 (OriginLab[®] Corp, Northampton, MA, USA) υπολογίστηκε η τάση, η παραμόρφωση και το μέτρο ελαστικότητας του αορτικού τοιχώματος.

Εικόνα 2. Σχηματική αναπαράσταση του πειράματος του μονοαξονικού εφελκυσμού. Ως *F* ορίzεται το ασκούμενο εφελκυστικό φορτίο, ως *l* το τελικό μήκος και ως *w*₀, *t*₀ και *l*₀ το αρχικό πλάτος, πάχος και μήκος του δείγματος, αντίστοιχα.

Η τάση *T* ορίστηκε ως ο λόγος του ασκούμενου στον επιμήκη άξονα εφελκυστικού φορτίου *F* προς την αρχική επιφάνεια διατομής του δείγματος:^{5-7,21,25,26,28}

$$T = \frac{F}{w_0 t_0} \tag{1}$$

Η παραμόρφωση ε υπολογίστηκε μέσω του μαθηματικού τύπου:^{5-7.25.26.28}

$$\varepsilon = \lambda - 1$$
 (2)

όπου λ ήταν ο λόγος του μήκους του δείγματος l, υπό την επίδραση φορτίου F, προς το αρχικό του μήκος l_0 , υπό την επίδραση μηδενικού φορτίου. Το μέτρο ελαστικότητας M, το οποίο συνιστά δείκτη της δυσκαμψίας του αορτικού τοιχώματος, προσδιορίστηκε ως η πρώτη παράγωγος της τάσης T προς την παραμόρφωση $ε:^{3-5.9.1321-28}$

$$M = \frac{dT}{d\varepsilon}$$
(3)

Η επιμήκης παραμόρφωση των αορτικών δειγμάτων στην in situ κατάστασή τους εξετάστηκε με απευθείας μέτρηση με παχύμετρο (σφάλμα: 0,1 mm) του μήκους των τμημάτων μεταξύ των ραμμάτων πριν και μετά από την αφαίρεσή τους. Η επανάταξη των τμημάτων κατά την αφαίρεσή τους περιγράφηκε από το λόγο $\lambda_{sttu}=l_{sttu}/l'_0$ του μήκους in situ l_{sttu} προς το μήκος l'_0 , υπό μηδενικού φορτίου, ενώ n in situ παραμόρφωση ε_{sttu} ορίστηκε διαμέσου της σχέσης (2) ως η διαφορά της μονάδας από το λόγο $\lambda_{sttu}^{28,29}$

Μετά την προετοιμασία, τα δείγματα υποβλήθηκαν σε σταθερή τάση και παρέμειναν ακινητοποιημένα σε προκαθορισμένη παραμόρφωση. Με την επίτευξη του επιθυμητού για κάθε δείγμα επιπέδου τάσης, ακολούθησε η εμβάπτισή του μαzί με τις αρπάγες σε μονιμοποιητή Karnovsky (3% γλουταραλδεΰδη και 1% φορμαλδεΰδη σε φωσφορικό ρυθμιστικό διάλυμα 0,1 Μ, pH 7,4). Η πειραματική διαδικασία περιέλαβε και δείγματα που δεν υποβλήθηκαν σε μηχανική προετοιμασία και στα οποία δεν εφαρμόστηκε κάποια τάση. Τα δείγματα αυτά, μετά την αφαίρεσή τους από την αορτή και την αποψίλωσή τους από τους γύρω ιστούς, τοποθετήθηκαν αμέσως σε διάλυμα Karnovsky για μονιμοποίηση και αποτέλεσαν δείγματα αναφοράς. Επίσης, ορισμένα δείγματα θωρακικής αορτής υποβλήθηκαν μόνο σε μηχανική προετοιμασία, χωρίς εφαρμογή, στη συνέχεια, τάσης και ακολούθως μονιμοποιήθηκαν σε διάλυμα Karnovsky, προκειμένου να μελετηθεί η επίδραση της μηχανικής προετοιμασίας στη δομή του τοιχώματός τους. Σε όλες τις περιπτώσεις, τα δείγματα παρέμειναν στο μονιμοποιητικό διάλυμα για τουλάχιστον 90 min.

Ιστολογική-μορφομετρική ανάλυση

Μετά τη μονιμοποίηση των αορτικών δειγμάτων σε διάλυμα Karnovsky, ακολούθησε η διαδικασία της αφυδάτωσης με διαδοχική εμβάπτισή τους σε αυξανόμενες συγκεντρώσεις διαλυμάτων αιθανόλης. Στη συνέχεια, έγινε διαύγαση του ιστού σε ξυλόλη και σκήνωσή του σε παραφίνη σε κλίβανο θερμοκρασίας 58-60 °C. Από τους κύβους παραφίνης ελήφθησαν τομές πάχους 5 μm με μικροτόμο (Microtome 820 Spencer, American Optical, USA), τόσο κατά τον επιμήκη όσο και κατά τον εγκάρσιο άξονα του αγγείου. Οι τομές βάφτηκαν με χρώση Verhoeff για την ανάδειξη της ελαστίνης και με τρίχρωμη χρώση Masson για το κολλαγόνο.

Η ιστολογική εξέταση των αορτικών τομών έγινε σε φωτομικροσκόπιο Zeiss Axiolab (Carl Zeiss, Oberkochen, GmbH). Προσαρμοσμένη επί του μικροσκοπίου ήταν ψηφιακή βιντεοκάμερα υψηλής ανάλυσης Sony-iris CCD (SSC-DC38P, Sony Corp, Japan), n οποία προέβαλλε την εικόνα του ιστολογικού παρασκευάσματος στην οθόνη ηλεκτρονικού υπολογιστή. Από πλευράς του υπολογιστικού συστήματος, υπήρχε δυνατότητα αποθήκευσης και αρχειοθέτησης των εικόνων (σε μορφή αρχείων υψηλής ποιότητας TIFF) στο σκληρό δίσκο για μετέπειτα αξιολόγησή τους. Η ιστολογική μελέτη έγινε με χρήση αντικειμενικών φακών ×20 και ×40. Κατόπιν, με χρήση του λογισμικού ανάλυσης εικόνας Image-Pro Plus v.3.1 (Media Cybernetics Inc, Silver Spring, MD, USA) πραγματοποιήθηκε η μορφομετρική ανάλυση των ιστολογικών τομών. Το λογισμικό πρόσφερε τη δυνατότητα υπολογισμού μεγάλου αριθμού μορφομετρικών παραμέτρων, όπως (α) της περιεκτικότητας του τοιχώματος σε ελαστίνη και κολλαγόνο, (β) του πάχους του μέσου χιτώνα, (γ) του αριθμού των πεταλειωδών μονάδων, (δ) του πάχους και (ε) του βαθμού πτύχωσης των ελαστικών μεμβρανών κ.ά.

ΑΠΟΤΕΛΕΣΜΑΤΑ

Καμπύλες τάσης-παραμόρφωσης

Χαρακτηριστική καμπύλη τάσης-παραμόρφωσης παρουσιάzεται στην εικόνα 3α, όπου διαπιστώνεται ότι η θωρακική αορτή είναι ένα μη γραμμικό ελαστικό υλικό. Παρατηρείται ότι η κλίση της εφαπτομένης στην καμπύλη, δηλαδή το μέτρο ελαστικότητας της αορτής, λαμβάνει ιδιαίτερα χαμηλές τιμές σε χαμηλά επίπεδα τάσεων, αυξάνεται όμως προοδευτικά σε υψηλότερα επίπεδα. Επομένως, οι μηχανικές ιδιότητες του αορτικού τοιχώματος δεν είναι εφικτό να αποδοθούν επαρκώς από μία μοναδική τιμή μέτρου ελαστικότητας για όλο το φάσμα των δυνητικά ασκούμενων τάσεων.

Αποτυπώνοντας τα δεδομένα τάσης-παραμόρφωσης της εικόνας 3α υπό τη μορφή καμπύλης μέτρου ελαστικότητας-τάσης, προκύπτουν ένα μη γραμμικό και δύο γραμμικά μέρη, τα οποία εκφράzονται με μαθηματικό τρόπο ως εξής (εικ. 38):

$M = kT^q$	$0 \leq T \leq T_{I}$	Μέρος Ι	(4a)
M = a + bT	$T_{\mathrm{I}} \leq T \leq T_{\mathrm{II}}$	Μέρος ΙΙ	(46)
M = c + dT	$T_{\rm H} \leq T \leq T_{\rm f}$	Μέρος ΙΙΙ	(4y)

σε συνάρτηση με τις παραμέτρους b και d, που αποτελούν τις κλίσεις και τις παραμέτρους a και c, που είναι τα σημεία τομής των ευθύγραμμων σχέσεων των μερών ΙΙ και ΙΙΙ. Οι παράμετροι k και q εκφράzουν τη μη γραμμική σχέση του μέρους Ι, ενώ τα σημεία μετάβασης, τα οποία συνιστούν τα όρια των τριών μερών, ορίzονται από τις τάσεις T_1 και $T_{\rm II}$. Οι σχέσεις (4) δίνουν τις ακόλουθες σχέσεις για τα τρία μέρη της καμπύλης τάσηςπαραμόρφωσης:

$T = [k(1-q)\varepsilon]^{1/(1-q)}$	$\theta \leq \epsilon \leq \epsilon_{\mathrm{I}}$	Μέρος Ι	(5a)
$T = (T_{\rm II} + \alpha/b)e^{b(\varepsilon - \varepsilon_{\rm II})} - \alpha/b$	$\varepsilon_{I} \leq \varepsilon \leq \varepsilon_{II}$	Μέρος ΙΙ	(56)
$T = (T_{\rm II} + c/d)e^{d(\varepsilon - \varepsilon_{\rm II})} - c/d$	$\epsilon_{II} \leq \epsilon \leq \epsilon_{f}$	Μέρος ΙΙΙ	(5y)

όπου ε₁ και ε₁₁ είναι οι τιμές των παραμορφώσεων στα δύο σημεία μετάβασης. Με T_f και ε_f σημειώνεται, αντίστοιχα, η μέγιστη τάση και παραμόρφωση, στην οποία υποβλήθηκαν τα αορτικά δείγματα.

Τα τρία διακριτά μέρη της καμπύλης μέτρου ελαστικότητας-τάσης ορίzονται ως εξής: Αρχίzοντας από τη μέγιστη τιμή τάσης, ο συντελεστής συσχέτισης της ευθύγραμμης σχέσης του μέρους ΙΙΙ αυξάνεται με την αύξηση του αριθμού των δεδομένων έως ένα σημείο, πέραν του οποίου μειώνεται δραστικά. Το σημείο αυτό θεωρείται ως το σημείο μετάβασης μεταξύ του μέρους ΙΙ και

Εικόνα 3. (α) Χαρακτηριστική καμπύλη τάσης-παραμόρφωσης της κατιούσας θωρακικής αορτής. (β) Τα δεδομένα της εικόνας 3α αναπαριστώνται υπό τη μορφή καμπύλης μέτρου ελαστικότητας-τάσης, η οποία αποτελείται από ένα μη γραμμικό (μέρος Ι) και δύο γραμμικά μέρη (ΙΙ και ΙΙΙ). Παρουσιάzονται τα σημεία μετάβασης, που συνιστούν τα όρια των τριών μερών. Τ_ι, ε₁ και M₁ είναι η τάση, η παραμόρφωση και το μέτρο ελαστικότητας στο σημείο μετάβασης από το μέρος Ι στο ΙΙ της καμπύλης, ενώ Τ_{ιι}, ε₁, M₁ οι αντίστοιχες τιμές στο σημείο μετάβασης από το μέρος ΙΙ στο ΙΙΙ.

III. Μέσω της ίδιας διαδικασίας ορίzεται και το σημείο μετάβασης μεταξύ του μέρους Ι και ΙΙ. Οι παράμετροι των τριών μερών της καμπύλης υπολογίzονται με εφαρμογή της διαδικασίας παλινδρόμησης ελαχίστων τετραγώνων κατά Marquardt,³⁰ κάνοντας χρήση του λογισμικού MicroCal Origin v.6.1.

Στην in situ κατάστασή της, υπολογίζεται ότι η κατιούσα θωρακική αορτή υφίσταται παραμόρφωση ε_{situ} της τάξης του 35%, τιμή που βρίσκεται μέσα στα όρια του μέρους ΙΙ της καμπύλης τάσης-παραμόρφωσης. Επίσης, βάσει του νόμου του Laplace,³¹ η in vivo τάση που αναπτύσσεται κατά τον επιμήκη άξονα του αορτικού τοιχώματος από την ενδοαυλική αρτηριακή πίεση προβλέπεται θεωρητικά ως >40 και <100 kPa.

Σύμφωνα με τους υπολογισμούς αυτούς, το μέρος ΙΙ των καμπυλών περιλαμβάνει τις φυσιολογικές τάσεις και άρα οι παράμετροι *a* και *b* είναι απαραίτητες για τη μελέτη των ελαστικών ιδιοτήτων σε επίπεδα φυσιολογικών τάσεων, ενώ οι *k* και *q*, και οι *c* και *d*, για τη μελέτη σε χαμηλά και υψηλά επίπεδα τάσεων, αντίστοιχα. Οι παράμετροι *k*, *a* και *c* θεωρούνται από άποψη δομική ως δείκτες της ενδογενούς δυσκαμψίας του αορτικού τοιχώματος, ανεξάρτητες της εφαρμοzόμενης τάσης. Αντίθετα, οι παράμετροι *q*, *b* και *d* είναι ενδεικτικές της σκλήρυνσης του τοιχώματος, όταν αυτό υποβάλλεται σε ολοένα αυξανόμενες τάσεις.

Ιστολογική δομή του αορτικού τοιχώματος σε διάφορα επίπεδα τάσης

Τα αορτικά δείγματα υποβλήθηκαν σε τέσσερα προεπιλεγμένα επίπεδα τάσης κατά τον επιμήκη άξονά τους: (α) σε μηδενική τάση, (β) σε μηχανική προετοιμασία και έπειτα μηδενική τάση, (γ) σε μηχανική προετοιμασία και τάση αντίστοιχη των φυσιολογικών, δηλαδή εντός του μέρους ΙΙ της καμπύλης τάσης-παραμόρφωσης, και (δ) σε μηχανική προετοιμασία και πολύ υψηλή τάση, την οποία περιλαμβάνει το μέρος ΙΙΙ της καμπύλης.

Τρίχρωμη χρώση Masson

Τομές κατά τον επιμήκη άξονα. Στην εικόνα 4 παρουσιάzονται αντιπροσωπευτικές ιστολογικές τομές της αορτής κατά τον επιμήκη άξονά της, οι οποίες έχουν βαφεί με τρίχρωμη χρώση Masson. Αξιοσημείωτες είναι οι μεταβολές στον κυματισμό των δεσμίδων του κολλαγόνου, που παρουσιάzονται συναρτήσει των εφαρμοzόμενων τάσεων. Στην εικόνα 4α, η οποία προέρχεται από δείγμα που δεν υποβλήθηκε σε τάση, και στην εικόνα 48, από δείγμα που υποβλήθηκε μόνο σε προετοιμασία, διαπιστώνεται ότι ο κυματισμός είναι μέγιστος. Οι δεσμίδες του κολλαγόνου αρχίzουν να ευθειάzονται, ιδίως στην περιοχή κοντά στον έξω χιτώνα, μετά την εφαρμογή φυσιολογικής τάσης στον αορτικό ιστό, γεγονός που αναδεικνύεται στην τομή της εικόνας 4γ. Από την επόμενη ιστολογική τομή των αορτικών δειγμάτων που υποβλήθηκαν σε υψηλή τάση (εικ. 4δ), σημειώνεται ότι η προοδευτική αύξηση του εφελκυστικού φορτίου έχει ως αποτέλεσμα τον πλήρη ευθειασμό των δεσμίδων του κολλαγόνου.

Τομές κατά τον εγκάρσιο άξονα. Η εικόνα 5 απεικονίzει εγκάρσιες ιστολογικές τομές δειγμάτων, που υποβλήθηκαν στα προαναφερθέντα επίπεδα τάσεων και έχουν βαφεί με την ίδια χρώση (τρίχρωμη Masson). Στην εικόνα 5α, η οποία αντιστοιχεί σε δείγματα που μονιμοποιήθηκαν αμέσως μετά την αφαίρεση του αορτικού ιστού, ο κυματισμός των δεσμίδων του κολλαγόνου είναι έντονος. Καμιά μεταβολή στον κυματισμό του κολλαγόνου δεν παρατηρείται στις ιστολογικές τομές που ακολουθούν (εικόνες 56, 5γ και 5δ), από δείγματα που υποβλήθηκαν σε μηχανική προετοιμασία, φυσιολογικές και υψηλές τάσεις αντίστοιχα, εξαιτίας του γεγονότος ότι η τάση εφαρμόστηκε κατά τον επιμήκη και όχι κατά τον εγκάρσιο άξονα του αγγείου και ως εκ τούτου οι μεταβολές επήλθαν κατά τον επιμήκη άξονα.

Χρώση Verhoeff

Τομές κατά τον επιμήκη άξονα. Χαρακτηριστικές επιμήκεις τομές της αορτής στα τέσσερα προεπιλεγμένα επίπεδα μηχανικής τάσης, βαμμένες με χρώση Verhoeff, παρουσιάzονται στην εικόνα 6. Παρατηρείται ότι ο κυματισμός των ινών της ελαστίνης μεταβάλλεται με το μέγεθος της εφελκυστικής τάσης. Ο κυματισμός παρουσιάzεται έντονος στην εικόνα 6α, στην τομή που αντιστοιχεί σε δείγματα όπου δεν ασκήθηκε τάση, και στην εικόνα 66 μετά την προετοιμασία του αορτικού ιστού, ενώ μειώνεται αισθητά στην εικόνα 6γ, που αντιστοιχεί σε φυσιο-

Y Εικόνα 4. Επιμήκεις ιστολογικές τομές του αορτικού τοιχώματος υπό (α) μηδενική τάση, προετοιμασία και (β) μηδενική, (γ) φυσιολογική και (δ) υψηλή τάση, με τις δεσμίδες του κολλαγόνου βαμμένες γκρι και τα λεία μυϊκά κύτταρα μαύρα. Ο κυματισμός των δεσμίδων βαίνει προοδευτικά μειούμενος από την τομή της εικόνας α και β σε εκείνη της εικόνας γ, όπου μεγάλος αριθμός δεσμίδων έχει ευθειαστεί στην περιοχή του μέσου

χιτώνα που γειτνιάzει με τον έξω και, τέλος, στην εικόνα δ, όπου παρατηρούνται μόνο ευθειασμένες δεσμίδες (τρίχρωμη χρώση Masson ×20).

Εικόνα 5. Εγκάρσιες ιστολογικές τομές του αορτικού τοιχώματος υπό (α) μηδενική τάση, προετοιμασία και (β) μηδενική, (γ) φυσιολογική και (δ) υψηλή τάση, με τις δεσμίδες του κολλαγόνου βαμμένες γκρι και τα λεία μυϊκά κύτταρα μαύρα. Ο κυματισμός των δεσμίδων δεν μεταβάλλεται προϊούσης της ασκούμενης τάσης (τρίχρωμη χρώση Masson ×20).

λογική τάση, ειδικότερα όσον αφορά στις ίνες πλησίον του έξω χιτώνα. Από τις ιστολογικές τομές που αντιστοιχούν σε υψηλή τάση (εικ. 6δ) συνάγεται ότι η προοδευτική αύξηση του εφελκυστικού φορτίου οδηγεί σε πλήρη ευθειασμό των ινών της ελαστίνης, έτσι ώστε αυτές να φέρουν αποτελεσματικότερα τις ασκούμενες τάσεις.

Τομές κατά τον εγκάρσιο άξονα. Εγκάρσιες τομές δειγμάτων, που υποβλήθηκαν στα προαναφερθέντα επίπεδα τάσεων και έχουν βαφεί με χρώση Verhoeff, φαίνονται στην εικόνα 7. Στην τομή της εικόνας 7α, από δείγματα που δεν υποβλήθηκαν σε μηχανική τάση αλλά μονιμοποιήθηκαν αμέσως μετά την αφαίρεσή τους, ο κυματισμός των ινών της ελαστίνης εμφανίzεται πλέον έντονος. Στις επόμενες τομές των εικόνων 76, 7γ και 7δ, από δείγματα που υποβλήθηκαν σε μηχανική προετοιμασία, φυσιολογική και υψηλή τάση, δεν σημειώνονται μεταβολές που αφορούν στον κυματισμό των ελαστικών ινών. Η απουσία ευθειασμού των ελαστικών ινών στις προηγούμενες τομές οφείλεται στο γεγονός ότι n τάση ασκήθηκε στον επιμήκη άξονα του δείγματος και ως εκ τούτου οι μεγαλύτερες μεταβολές επήλθαν κατά τον αυτόν άξονα.

ΣΥΖΗΤΗΣΗ

Στην εργασία αυτή παρουσιάzεται πρότυπο σύστημα μελέτης των μεταβολών στην ιστομορφολογία του αορτικού τοιχώματος, όταν αυτό υποβάλλεται σε προκαθορισμένα επίπεδα μηχανικής τάσης *in vitro*. Επίσης, γίνεται συσχέτιση της ιστομορφολογίας της αορτής με τις μηχανικές της ιδιότητες, όπως αυτές αναπαριστώνται από τη σχέση τάσης-παραμόρφωσης, για ευρύ φάσμα τάσεων που ασκούνται στο αορτικό τοίχωμα.

Εικόνα 6. Επιμήκεις ιστολογικές τομές του αορτικού τοιχώματος υπό (α) μηδενική τάση, προετοιμασία και (β) μηδενική, (γ) φυσιολογική και (δ) υψηλή τάση, με τις ίνες της ελαστίνης βαμμένες μαύρες και τα υπόλοιπα στοιχεία του τοιχώματος γκρι. Ο κυματισμός των ινών μειώνεται προοδευτικά από την τομή της εικόνας α και β σε εκείνη της εικόνας γ, όπου οι περισσότερες ίνες έχουν ευθειαστεί στην περιοχή του μέσου χιτώνα που γειτνιάζει με τον έξω και, τέλος, στην εικόνα δ, όπου παρατηρούνται μόνο ευθειασμένες ίνες (χρώση Verhoeff ×20).

Σχολιασμός των ιστολογικών αποτελεσμάτων

Από την εξέταση σε μικροσκοπικό επίπεδο της διάταξης του δικτύου των ινών της ελαστίνης και των δεσμίδων του κολλαγόνου στα προεπιλεγμένα επίπεδα μηχανικής τάσης, προκύπτει ότι ο μέσος χιτώνας της αορτής δεν συμπεριφέρεται ως ενιαία οντότητα, καθόσον η διάταξη όλων των πεταλειωδών μονάδων δεν μεταβάλλεται το ίδιο με την επιβολή τάσης. Σε μηδενική τάση, οι πεταλειώδεις μονάδες,^{19,20,32} δηλαδή τα συστήματα των ελαστικών και κολλαγόνων ινών και των λείων μυϊκών κυττάρων, παρουσιάzουν έντονο κυματισμό και ακανόνιστη διάταξη. Με την προοδευτική αύξηση της τάσης, που ασκείται κατά τον επιμήκη άξονα του αγγείου στα *in vivo* επίπεδα, οι πεταλειώδεις μονάδες, οι οποίες χωροταξικά βρίσκονται στο έξω τμήμα του μέσου χιτώνα, αναδιατάσσονται κατά τον επιμήκη άξονα και αρχίzουν να ευθειάzονται. Σε υψηλές τάσεις, παρατηρείται σχεδόν απόλυτη ευθυγράμμισή τους παράλληλα με τη διεύθυνση εφαρμογής του εφελκυστικού φορτίου. Αντίθετα, οι πεταλειώδεις μονάδες, που βρίσκονται στο έσω τμήμα του μέσου χιτώνα, διατηρούν την αρχική διάταξή τους και ευθειάzονται σχετικά λιγότερο. Διαπιστώνεται, κατά συνέπεια, ότι το αορτικό τοίχωμα περιλαμβάνει δύο ξεχωριστά συστήματα πεταλειωδών μονάδων. Ένα προς τον έξω χιτώνα του αγγείου, που έχει τη δυνατότητα να μεταβάλλει τη διάταξή του ανάλογα με τις εφαρμοzόμενες τάσεις, και ένα δεύτερο, ευρισκόμενο προς τον έσω χιτώνα, που διατηρεί σταθερή διάταξη.

Είναι άξιο αναφοράς το γεγονός ότι η εφαρμογή στον αορτικό ιστό παρά φύση τάσεων κατά τον επιμήκη άξονα του αγγείου -καθόσον η παλμική τάση ασκείται, κατά κύριο λόγο, εγκαρσίως *in vivo*- επιφέρει αναδιά-

Εικόνα 7. Εγκάρσιες ιστολογικές τομές του αορτικού τοιχώματος υπό (α) μηδενική τάση, προετοιμασία και (β) μηδενική, (γ) φυσιολογική και (δ) υψηλή τάση, με τις ίνες της ελαστίνης βαμμένες μαύρες και τα υπόλοιπα στοιχεία του τοιχώματος γκρι. Ο κυματισμός των ινών παραμένει αμετάβλητος προϊούσης της ασκούμενης τάσης (χρώση Verhoeff ×20).

ταξη του δικτύου της ελαστίνης και του κολλαγόνου και ευθειασμό τους επί του άξονα εφαρμογής της τάσης. Το εύρημα αυτό είναι ενδεικτικό της δυνατότητας του αορτικού ιστού να μεταβάλλει τη μικροδομή του και να ανακατανέμει τα δομικά στοιχεία του, ώστε να αντεπεξέρχεται με τον καλύτερο δυνατό τρόπο στα ασκούμενα φορτία. Αποδεικνύεται, επομένως, η ανωτερότητα του βιολογικού ιστού έναντι κάθε υλικού που είναι προϊόν της σύγχρονης τεχνολογίας. Το βιολογικό υλικό δεν παραμένει στατικό, αλλά είναι σε θέση να προσαρμόζει τη μικροδομή του στις εκάστοτε μεταβολές της ασκούμενης τάσης, δηλαδή της ενδοαυλικής πίεσης, επιτελώντας το ρόλο του και συμβάλλοντας στην ομοιοστασία του καρδιαγγειακού συστήματος.^{1,2}

Οι Glagov et al^{16-20,32} συνέκριναν τη διευθέτηση των ινών της ελαστίνης και του κολλαγόνου του τοιχώματος της αορτής σε διάφορες ενδοαυλικές πιέσεις, κυμαινόμενες από 0-200 mmHg, έχοντας συνδέσει το αγγείο με *in vitro* πειραματική διάταξη τεχνητής κυκλοφορίας. Οι συγγραφείς αυτοί κατέληξαν στο συμπέρασμα ότι το χαλαρό δίκτυο των ινών της ελαστίνης φέρει τις τάσεις όταν αυτές παραμένουν σε χαμηλά επίπεδα, ενώ σε φυσιολογικά και υψηλά επίπεδα οι τάσεις φέρονται από τις ίνες του κολλαγόνου. Εντούτοις, δεν διερεύνησαν διεξοδικά τη σχέση μεταξύ της ιστολογικής δομής και της μηχανικής συμπεριφοράς του αορτικού τοιχώματος.

Τα ευρήματά τους^{16-20,32} είναι σε συμφωνία με τα αποτελέσματα της παρούσας μελέτης, ωστόσο η πειραματική μέθοδος του μονοαξονικού εφελκυσμού παρουσιάzει ορισμένα πλεονεκτήματα, που συμπληρώνουν εγγενείς αδυναμίες της μεθόδου της τεχνητής κυκλοφορίας *in vitro*. Συγκεκριμένα, επιτρέπει την καταγραφή των μηχανικών ιδιοτήτων του αορτικού τοιχώματος σε ολόκληρο το φάσμα των δυνητικά ασκούμενων στο τοίχωμα

τάσεων, όχι μόνο εντός του περιορισμένου φάσματος πιέσεων μεταξύ 0-200 mmHg, αλλά σε ευρύτατο φάσμα τάσεων και παραμορφώσεων, που αρχίζουν από μηδενικές και ανέρχονται σε πολύ υψηλές τιμές, κοντά στο όριο αστοχίας του ιστού. Επιπρόσθετα, η μέθοδος αυτή επιτρέπει τη διερεύνηση της σχέσης τάσης-παραμόρφωσης κατά μήκος όλων των αξόνων της αορτής, τόσο κατά τον εγκάρσιο άξονα όσο και κατά τον επιμήκη. Αντίθετα, η μέθοδος της τεχνητής κυκλοφορίας προσομοιάzει μερικά με την in vivo κατάσταση, αδυνατεί όμως να εξετάσει μεμονωμένες φορτίσεις κατά τον επιμήκη άξονα. Η πειραματική μέθοδος του μονοαξονικού εφελκυσμού παρέχει, επομένως, ακριβέστερη εικόνα της μηχανικής συμπεριφοράς του αορτικού ιστού και συμβάλλει στην κατανόηση των πολύπλοκων μηχανισμών που την καθορίzουν.

Συσχέτιση ιστολογικής δομής και μηχανικής συμπεριφοράς της αορτής

Η διαίρεση της καμπύλης τάσης-παραμόρφωσης του αορτικού τοιχώματος σε τρία μέρη μπορεί να επεξηγηθεί με βάση τη διφασική φύση αυτού. Είναι γνωστό^{1,2,16-20,27,28,31-35} ότι οι μηχανικές ιδιότητες της αορτής οφείλονται στο μέσο χιτώνα της, ο οποίος αποτελείται κυρίως από κολλαγόνο, ελαστίνη και λεία μυϊκά κύτταρα. Στις παθητικές ιδιότητες του μέσου χιτώνα συμβάλλουν πρώτιστα το δίκτυο των ινών της ελαστίνης και του κολλαγόνου, με αποτέλεσμα αυτός να συμπεριφέρεται ως διφασικό υλικό.^{1,2,16-20,27,28,31-35} Τα λεία μυϊκά κύτταρα είναι υπεύθυνα για τις ενεργητικές ιδιότητες του αορτικού τοιχώματος και την παραγωγή εξωκυττάριας θεμέλιας ουσίας.^{1,2,27,28,31-35}

Στην εικόνα 36, η οποία αποτελεί τυπική καμπύλη μέτρου ελαστικότητας-τάσης, παρατηρείται ότι οι ανώτερες τιμές που ελάμβανε το μέτρο ελαστικότητας στα μέρη Ι και ΙΙΙ της καμπύλης ήταν περίπου 200 kPa και 10 MPa, τιμές αντίστοιχες των μέτρων ελαστικότητας της ελαστίνης και του κολλαγόνου.³²⁻³⁴ Είναι, κατά συνέπεια, προφανές ότι το μέρος Ι της καμπύλης τάσηςπαραμόρφωσης και μέτρου ελαστικότητας-τάσης σχετίzεται με τον ευθειασμό των ινών της ελαστίνης, ενώ τα μέρη ΙΙ και ΙΙΙ με την ευθυγράμμιση των δεσμίδων του κολλαγόνου κατά τη διεύθυνση εφαρμογής των τάσεων. Εφόσον όμως τα μέρη Ι, ΙΙ και ΙΙΙ αντιστοιχούν σε χαμηλές, φυσιολογικές και υψηλές τάσεις, είναι ευνόητο ότι η μηχανική συμπεριφορά του αορτικού τοιχώματος σε χαμηλές τιμές τάσεων καθορίzεται από την παρουσία της ελαστίνης, ενώ σε φυσιολογικές και υψηλές από την ύπαρξη του κολλαγόνου.^{16-20,31}

Συνοψίzοντας, παρατηρούμε ότι το κολλαγόνο και η ελαστίνη συνιστούν τα ιδανικά δομικά συστατικά για ένα διφασικό υλικό, όπως το αορτικό τοίχωμα. Το κολλαγόνο παρουσιάζει μεγάλη αντοχή και μέτρο ελαστικότητας της τάξης των 1×109 dynes/cm², ενώ η ελαστίνη έχει σημαντικά μικρότερη αντοχή και μέτρο ελαστικότητας περίπου 3×106 dynes/cm2. Η ύπαρξή τους στο αορτικό τοίχωμα έχει ως συνέπεια αυτό να εμφανίzει ελαστικότητα παρόμοια με εκείνη της ελαστίνης σε χαμηλές τάσεις, δηλαδή στο μέρος Ι της καμπύλης τάσηςπαραμόρφωσης. Όσο όμως αυξάνεται η τάση που εφαρμόzεται στο αορτικό τοίχωμα, πάνω από τις φυσιολογικές τιμές που αντιστοιχούν στο μέρος ΙΙ, εξαντλείται n συνεισφορά της ελαστίνης στην καμπύλη τάσης-παραμόρφωσης και αυξάνεται εκείνη του κολλαγόνου, έτσι ώστε το μέρος ΙΙΙ της καμπύλης να είναι αποτέλεσμα της δράσης του τελευταίου.

Πρέπει, τέλος, να αναφερθεί ότι, σύμφωνα με τη θεωρία μικρομηχανικής των σύνθετων υλικών,³⁶ τα διφασικά υλικά έχουν το βασικό πλεονέκτημα να παρουσιάzουν μεγαλύτερη αντοχή σε σχέση με το ανθεκτικότερο συστατικό τους, επειδή το λιγότερο ανθεκτικό από αυτά, δηλαδή η ελαστίνη στην περίπτωση της αορτής, επιφορτίzεται με το ρόλο της ομοιόμορφης κατανομής των τάσεων, αποτρέποντας τη δημιουργία zωνών συγκέντρωσης των τάσεων εντός του αορτικού τοιχώματος, οι οποίες και αποτελούν τις συνηθέστερες αιτίες αστοχίας ενός υλικού.

ΕΥΧΑΡΙΣΤΙΕΣ

Οι συγγραφείς ευχαριστούν την εταιρεία Digital Image Systems για την τεχνική υποστήριξη του συστήματος μορφομετρίας. Επίσης, ευχαριστούν την κυρία Βασιλική Δότσικα για την ιστολογική επεξεργασία των δειγμάτων. Τέλος, εκφράzονται ευχαριστίες προς την κυρία Β. Βλάχου, φοιτήτρια της Ιατρικής Σχολής, για τη βοήθειά της στη διεξαγωγή των μορφομετρικών μετρήσεων.

Model system development for correlation between histologic structure and mechanical behavior of the aorta

E. KEFALOYANNIS,¹ D.P. SOKOLIS,² M. KOULOUKOUSSA,³ S. HAVAKI,³ E. MARINOS,³ P.E. KARAYANNACOS² ¹Laboratory for Experimental Surgery and Surgical Research, Medical School, University of Athens ²Laboratory of Biomechanics, Foundation of Biomedical Research, Academy of Athens ³Laboratory of Histology and Embryology, Medical School, University of Athens, Greece

Archives of Hellenic Medicine 2005, 22(1):54-65

OBJECTIVE The purpose of this study was the development of a model system for the investigation of the histological structure of the aortic wall when subjected to pre-selected levels of stress. METHOD Ten white male New Zealand rabbits with a body weight of 3,600 g were used for this study. Through a midline thoracic incision, the descending thoracic aorta was resected and cleaned of surrounding tissues. Longitudinal strips of fixed dimensions were acquired and subjected to uniaxial tensile testing on a Vitrodyne V1000 Universal Tester. Various pre-selected levels of stress were applied to the specimens in their longitudinal axis. Some were not subjected to mechanical stress and served for reference. The tissue was then fixed under stress in Karnovsky's solution for a minimum of 90 min and embedded in paraffin; transverse and longitudinal 5-µm sections were taken. Verhoeff's stain was used for elastin and Masson's trichrome stain for collagen. The histological study was carried out using a Zeiss Axiolab light microscope. **RESULTS** The stress-strain and elastic modulus-stress curves were divided into three parts, referring to low, physiologic and high stresses. At low levels of stress, the elastic modulus of the aortic wall was comparable to that of elastin, while at high levels to that of collagen. In the longitudinal histological sections, mechanical stress caused gradual straightening of elastin fibers and collagen bundles with increase in stress levels. The waviness of elastin and collagen remained invariant at all levels of longitudinally applied mechanical stress in the transverse sections. CONCLUSIONS A correlation was shown between the morphologic alterations occurring in the aortic wall and the level of applied stress. The morphometric analysis of the remodeling observed in the aortic wall upon the application of stress contributes to a clear understanding of the mechanical behavior of the aorta. The remodeling of the histological components of the aorta results in a more uniform distribution of stresses within the aortic wall, and helps to explain its contribution to homeostasis of the circulatory system.

.....

Key words: Elastic properties, Histologic structure, Morphometry

Βιβλιογραφία

- BOUDOULAS H, WOOLEY CF. Aortic function. In: Boudoulas H, Toutouzas PK, Wooley CF (eds) *Functional abnormalities of the aorta*. Futura Publ Co Inc, New York, 1996:3–36
- NICHOLS WW, O'ROURKE MF. McDonald's blood flow in arteries. Theoretical, experimental and clinical principles. 3rd ed. Oxford University Press, New York, 1990:77–114, 216– 266, 283–374
- 3. COX RH. Effects of age on the mechanical properties of rat carotid artery. *Am J Physiol* 1977, 233:H256–H263
- YIN FCP, SPURGEON HA, KALLMAN CH. Age-associated alterations in viscoelastic properties of canine aortic strips. *Circ Res* 1983, 53:464–472
- SHEREBRIN MH, HEGNEY JE, ROACH MR. Effects of age on the anisotropy of the descending human thoracic aorta determined by uniaxial tensile testing and digestion by NaOH under load. *Can J Physiol Pharmacol* 1989, 67:871–878

- 6. WUYTS FL, VANHUYSE VJ, LANGEWOUTERS GJ, DECRAEMER WF, RAMAN ER, BUYLE S. Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. *Phys Med Biol* 1995, 40:1577–1597
- HAUT RC, GARG BD, METKE M, JOSA M, KAYE MP. Mechanical properties of the canine aorta following hypercholesterolemia. J Biomech Eng 1980, 102:98–102
- 8. HAYASHI K, IDE K, MATSUMOTO T. Aortic walls in atherosclerotic rabbits-mechanical study. *J Biomech Eng* 1994, 116:284–293
- 9. COX RH, DETWEILER DK. Arterial wall properties and dietary atherosclerosis in the racing greyhound. *Am J Physiol* 1979, 236:H790–H797
- STEFANADIS C, WOOLEY CF, BUSH CA, KOLIBASH AJ, BOUDOU-LAS H. Aortic distensibility abnormalities in coronary artery disease. Am J Cardiol 1987, 59:1300–1304

- 11. BOGREN HG, MOHIADDIN RH, KLIPSTEIN RK, FIRMIN DN, UNDER-WOOD RS, REES SR ET AL. The function of the aorta in ischemic heart disease: a magnetic resonance and angiographic study of aortic compliance and blood flow patterns. *Am Heart J* 1989, 118:234–247
- 12. BOUDOULAS H, WOOLEY CF. Aortic distensibility: important in clinical medicine? *Cardiol Rev* 1994, 2:211–217
- 13. SHARMA MG, HOLLIS TM. Rheological properties of arteries under normal and experimental hypertension conditions. *J Biomech* 1976, 9:293–300
- 14. VAISHNAV RN, VOSSOUGHI J, PATEL DJ, COTHRAN LN, COLEMAN BR, ISON-FRANKLIN EL. Effect of hypertension on elasticity and geometry of aortic tissue from dogs. *J Biomech Eng* 1990, 112:70–74
- 15. MATSUMOTO T, HAYASHI K. Mechanical and dimensional adaptation of rat aorta to hypertension. *J Biomech Eng* 1994, 116:278–283
- 16. GLAGOV S, WOLINSKY H. Aortic wall as a "two-phase" material. *Nature* 1963, 199:609–611
- 17. WOLINSKY H, GLAGOV S. Structural basis for the static mechanical properties of the aortic media. *Circ Res* 1964, 14:400–413
- CLARK J, GLAGOV S. Luminal surface of distended arteries by scanning electron microscopy: eliminating configurational and technical artifacts. *Br J Exp Pathol* 1976, 57:129–135
- 19. CLARK J, GLAGOV S. Structural integration of the arterial wall. *Lab Invest* 1979, 40:587–602
- 20. CLARK J, GLAGOV S. Transmural organization of the arterial media. *Arteriosclerosis* 1985, 5:19–34
- 21. SOKOLIS DP, BOUDOULAS H, KARAYANNACOS PE. Assessment of the aortic stress-strain relation in uniaxial tension. *J Biomech* 2002, 35:1213–1223
- 22. ANGOURAS D, SOKOLIS DP, DOSIOS TH, KOSTOMITSOPOULOS N, BOUDOULAS H, SKALKEAS G ET AL. Effect of impaired vasa vasorum flow on the structure and mechanics of the thoracic aorta: implications for the pathogenesis of aortic dissection. *Eur J Cardiothorac Surg* 2000, 17:468–473
- 23. BERGEL DH. Static elastic properties of the arterial wall. J Physiol Lond 1961, 156:445-457

- BERGEL DH. The properties of blood vessels. In: Fung YC, Perrone N, Anliker M (eds) *Biomechanics, its foundations* and objectives. Prentice Hall, Englewood Cliffs, NJ, 1972:105– 139
- 25. FUNG YC. Biorheology of soft tissues. *Biorheology* 1973, 10:139–155
- 26. TANAKA TT, FUNG YC. Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. *J Biomech* 1974, 7:357–370
- 27. COX RH. Passive mechanics and connective tissue composition of canine arteries. *Am J Physiol* 1978, 234:H533–H541
- 28. FUNG YC. *Biomechanics: Mechanical properties of living tissues.* 2nd ed. Springer-Verlag, New York, 1993
- 29. HAN HC, FUNG YC. Longitudinal strain of canine and porcine aortas. J Biomech 1995, 28:637–641
- 30. ARMITAGE P, BERRY G. *Statistical methods in medical research*. 2nd ed. Blackwell Scientific Publ, Oxford, 1987
- 31. MILNOR WR. *Hemodynamics*. 2nd ed. Williams & Wilkins, Baltimore, MD, 1989:58–101
- 32. WOLINSKY H, GLAGOV S. A lamellar unit of aortic medial structure and function in mammals. *Circ Res* 1967, 20:99–111
- 33. DOBRIN P. Mechanical properties of arteries. *Physiol Rev* 1978, 58:397–460
- CANFIELD TR, DOBRIN PB. Static elastic properties of blood vessels. In: Skalak R, Chien S (eds) Handbook of bioengineering. McGraw-Hill, New York, 1987:1–28
- 35. LAKE LW, ARMENIADES CD. Structure-property relations of aortic tissue. *Trans Am Soc Artif Intern Organs* 1972, 18:202–209
- 36. JONES RM. Micromechanical behavior of a lamina. In: *Me-chanics of composite materials*. Scripta Book Co, Washington, 1975:85–98

Corresponding author:

E. Kefaloyannis, 10 Plateon street, GR-151 24 Amaroussio, Greece

e-mail: mankef@med.uoa.gr