The prevalence of tuberculin skin positivity among Greek army recruits

OBJECTIVE Although the prevalence of tuberculosis (TB) is declining, it remains one of the leading causes of death among infectious diseases worldwide. In this study, the prevalence and predictors of tuberculin skin testing (TST) positivity were analyzed among Greek army recruits. METHOD The study population consisted of 3,684 men aged 18–43 years recruited into the Greek army between November 2010 and February 2011. TST was performed on all recruits on enrollment, according to established procedures. A TST reaction size ≥15 mm was considered positive. Anthropometric measurements (height, weight) were performed using standard techniques. Data on age, place of residence, and educational level were collected. RESULTS The mean age of the recruits was 23.2±2.8 years. TST positivity prevalence was 1.4% (52/3,684), and bivariable analysis and backward, stepwise multivariable logistic regression showed that the sociodemographic characteristics did not vary with TST positivity. CONCLUSIONS The prevalence of TST positivity among Greek male army recruits is very low (1.4%). The percentage of TST positivity has continued to decrease in Greece over the last 30 years in spite of a surge of immigrants from countries with high TB infection rates.
over the last 30 years. The purpose of this study was to evaluate the prevalence and sociodemographic predictors of TST positivity in Greek army recruits during the period November 2010 to February 2011.

MATERIAL AND METHOD

Study population

The study was conducted in Thiva and in Mavrodendri, Kozani, Greece, where the Artillery Training Center and the 523 Infantry Training Center, respectively, are currently based. The study population consisted of 3,684 male Greek army recruits (entering November 2010–February 2011), aged 18 to 43 years. All the recruits underwent chest X-ray, routine physical examination and a TST. The study protocol was approved by the Medical Directorate of the Greek Army General Staff.

Tuberculin skin testing

Two tuberculin units (TU) of purified protein derivative (PPD) in 0.1 mL (RT 23 in Tween 80, SSI, Statens Serum Institute, Denmark) was injected into the dermis on the volar surface of the forearm. The reaction was evaluated 48 to 72 hours later by physicians who measured the maximum transverse diameter of the induration using the ballpoint pen-ruler method. A reaction size of ≥15 mm was characterized as positive. Study participants with a reaction size ≥15 mm were interviewed and examined by the staff of the departments of pulmonary medicine of either the 401 Army General Hospital of Athens or the 424 Army General Hospital of Thessaloniki, and were treated for LTBI, when indicated.

Data collection

Measurement of body height (H) and weight (W) was performed by physicians using standard techniques, with the soldiers wearing no shoes and underwear only.

Body mass index (BMI) was calculated according to Quetelet’s formula: BMI=W/H². Weight status was classified according to the WHO definitions: Underweight, BMI <18.5 kg/m²; normal weight, 18.5≤BMI<25 kg/m²; overweight, 25≤BMI<30 kg/m²; obese, BMI ≥30 kg/m².

The place of residence of the recruits was classified as urban (≥10,000 people) and rural (<10,000) areas, based on data from the National Statistical Service of Greece (2001 Census). For the purposes of this analysis, the residential areas were further divided into urban (cities with population >100,000), semi-urban (cities or towns with population ≥10,000 and <100,000), and rural (smaller cities, towns and villages with population <10,000).

Two categories of educational level of the recruits were created, depending on the years of education: individuals with >9 school years (“higher” education) and individuals with ≤9 school years (“lower” education).

As previous medical records were not available for review, no data on the recruits’ BCG vaccination history could be obtained.

Statistical analysis

Induration of ≥15 mm was characterized as positive. T-test and chi-square test were used in bivariable analysis to compare the prevalence of tuberculin reactivity for continuous and categorical variables, respectively. Backward stepwise multivariable logistic regression (p<0.05 for addition, and p<0.1 for removal) was used to assess the sociodemographic characteristics independently associated with tuberculin reactivity. All p-values were 2-tailed (α=0.05). Analyses were performed using STATA 10.0 (STATA, College Station, TX).

RESULTS

The mean age (±standard deviation (SD)) of the recruits was 23.2±2.8 years (tab. 1). The overall prevalence of TST positivity (≥15 mm) was 1.4% (52 of the 3,684 recruits). Table 2 presents the results of the bivariable analysis performed to investigate possible associations of the epidemiological characteristics with the presence of TST reactivity. Sociodemographic characteristics did not vary with the presence of TST reactivity.

A backward, stepwise multivariable logistic regression model also showed that none of the sociodemographic characteristics investigated was statistically independently associated with presence of TST reactivity.

Table 1. Sociodemographic characteristics among 3,684 Greek male army recruits.

<table>
<thead>
<tr>
<th>Values*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>23.2±2.8</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.8±0.1</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>80.4±14.4</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.2±4.0</td>
</tr>
<tr>
<td>Education†</td>
<td></td>
</tr>
<tr>
<td>Higher</td>
<td>1,594 (43.3)</td>
</tr>
<tr>
<td>Lower</td>
<td>2,090 (56.7)</td>
</tr>
<tr>
<td>Residence‡</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>1,228 (33.3)</td>
</tr>
<tr>
<td>Semiurban</td>
<td>1,019 (27.7)</td>
</tr>
<tr>
<td>Urban</td>
<td>1,437 (39.0)</td>
</tr>
</tbody>
</table>

* Values are mean±SD for continuous variables, and n (%) for categorical variables
† Educational level was classified as lower (≤9 school years) and higher (>9 school years)
‡ Place of residence was classified as urban (≥10,000 people) and rural (<10,000 people), based on the data from the National Statistical Service of Greece
BMI: Body mass index
A TST positivity threshold of 15 mm was used in this study. It has been suggested that if the BCG vaccination was administered more than 15 years previously, it should be ignored as a cause of a current positive TST result, especially if the induration is >15 mm. The findings of the present study are in accordance with those of Katsenos et al in a similar population. Dealing with the problem of previous BCG vaccination in Greek army recruits, the authors conducted IGRA in all subjects with a TST >0 mm and found positive results only in those with TST indurations of ≥15 mm, but none in those with TST indurations of 10–14 mm.

Potential limitations of the study should be considered. A positive TST reaction could possibly represent LTBI, previous BCG vaccination, or a cross reaction to non-tuberculous Mycobacteria (NTM). Although no data on prior BCG vaccination could be obtained, universal BCG vaccination of all children at school entry or in later school years (age of 5 to 7 years) continues to be compulsory in Greece. However, when the induration is ≥15 mm, the likelihood that prior BCG vaccination, if performed more than 10 years previously, will interfere with the results of the TST has been shown to be small. As far as the NTM infection rate in Greek army recruits is concerned, it is reported to be low (ranging from 4.1 to 7.1%), and it almost never causes induration ≥15mm.

Additionally, the TST technique itself has certain drawbacks. It requires two visits and skilled personnel for administration and interpretation. However, these major issues were successfully dealt with in this study, since, in the army setting, all recruits came back for the second visit, and the placement and interpretation of the TST was conducted by trained physicians. The TST remains the standard test of choice for the diagnosis of LTBI in large and presumably healthy populations such as that of this study, at least until IGRA testing becomes less expensive and/or more clinical data on IGRA become available.

Finally, these results cannot be extrapolated to other populations (e.g., the elderly, women, etc.), as this study included only healthy males between 18 and 43 years of age. All the study recruits had a normal chest X-ray, reported no recent close contact with a person with active TB, and they were generally in a good health; individuals with risk factors for TB (diabetes mellitus, HIV, immunodeficiency, hematological malignancies) are not recruited into the Greek army. Apart from that, the study recruits comprised a representative sample of the general male population of that age in Greece, since enrollment in the Greek Armed Forces is obligatory for all males above the

Table 2. Bivariable analysis of risk factors associated with TST positivity (defined as induration ≥15 mm) among 3,684 Greek male army recruits.

<table>
<thead>
<tr>
<th>(-) Mantoux (n=3,632)</th>
<th>(+) Mantoux (n=52)</th>
<th>p†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) 23.3±2.9 23.1±2.3 0.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (m) 1.8±0.1 1.8±0.1 0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg) 80.3±14.4 84.0±15.9 0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²) 25.2±4.0 26.1±4.2 0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education§</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher 1,572 (43.3) 22 (42.3) 0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower 2,060 (56.7) 30 (57.7) 0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residence‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural 1,214 (33.4) 14 (26.9) 0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semiurban 1,005 (27.7) 14 (26.9) 0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban 1,413 (38.9) 24 (46.2) 0.29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Values are mean±SD for continuous variables, and n (%) for categorical variables
† t-test for continuous variables; x² test for categorical variable
§ Educational level was classified as lower (≤9 school years) and higher (>9 school years)
‡ Place of residence was classified as urban (≥10,000 people) and rural (<10,000 people), based on the data from the National Statistical Service of Greece

DISCUSSION

The main finding of this study is that, compared with previous similar Greek studies, there has been a decrease in the prevalence of TST positivity among Greek army recruits in the last 30 years. Bouros et al reported a decline of TST positivity from 14.2% in 1981 to 6.8% in 1991 (using the criterion of reactivity of ≥10 mm). German et al reported in 2006 a TST positivity of 3.9% (>15 mm). Similarly, Katsenos et al reported a TST positivity of 3.4% (>15 mm). Here a further decline is documented of TST positivity to 1.4% (≥15 mm), which reflects the progress towards TB elimination made over the past decades in Greece. The prevalence of TST positivity in Greek army recruits is close to or even less than that reported in other developed countries.

A previous study that modeled the relevant epidemiological trends predicted a faster decrease of TST positivity in Greek army recruits, based on the success of the national anti-TB campaign. However, immigration from developing countries with a high prevalence of TB (Iraq, Afghanistan, Pakistan, India, etc.) and repatriation of persons of Greek origin from the former Soviet Union and Balkan countries have probably challenged this declining trend during the last 20 years.
Επίπτωση θετικής δερμοαντίδρασης φυματίνης σε νεοσύλλεκτους οπλίτες του στρατού ξηράς

Γ. ΜΙΧΑΣ, Ι.Α. ΔΡΟΣΑΤΟΣ, Μ. ΚΟΚΟΛΙΟΣ, Α. ΚΑΜΠΟΥΡΑΣ, Μ. ΣΧΟΙΝΑ, Α. ΑΣΗΜΑΚΟΣ, Ρ. ΜΙΧΑ*

1 Τμήμα Εσωτερικής Παθολογίας, Α’ Παθολογική Κλινική, Γενικό Νοσοκομείο Καλαμάτας, Καλαμάτα,
2 Ιατρική Υπηρεσία Κέντρου Εκπαίδευση Πυροβολικού, Θήβα,
3 Ιατρική Υπηρεσία 9ης Ταξιαρχίας Πεζικού, Κοζάνη,
4 Ιατρική Υπηρεσία XXIV Τεθωρακισμένης Ταξιαρχίας, Λιτόχωρο Πιερίας,
5 Τμήμα Εσωτερικής Παθολογίας, Γενικό Νοσοκομείο Κατερίνης, Κατερίνη,
6 Τμήμα Εντατικής Θεραπείας, Γενικό Νοσοκομείο Αθηνών «Ευαγγελισμός», Αθήνα,
7 Τμήμα Επιδημιολογίας, Harvard School of Public Health, Βοστόνη, ΗΠΑ

Αρχεία Ελληνικής Ιατρικής 2012, 29(3):331–335

ΣΚΟΠΟΣ Η φυματίωση είναι λοιμώδης νόσος, η οποία οφείλεται στο Mycobacterium tuberculosis και παραμένει ένα σοβαρό πρόβλημα υγείας, ιδιαίτερα στις αναπτυσσόμενες χώρες. Η δερμοαντίδραση φυματίνης (Mantoux) αποτελεί ένα από τα κυριότερα μέσα για τη διάγνωση της φυματίωσης. Σκοπός της παρούσας μελέτης ήταν η ανάλυση της επίπτωσης της θετικής Mantoux σε νεοσύλλεκτους οπλίτες του στρατού ξηράς.

ΥΛΙΚΟ-ΜΕΘΟΔΟΣ Εκπονήθηκε έρευνα σε 3.684 νεοσύλλεκτους οπλίτες που κατατάχθηκαν στο στρατό ξηράς κατά το χρονικό διάστημα Νοέμβριος 2010–Φεβρουάριος 2011. Οι οπλίτες ήταν ηλικίας 18−43 ετών. Η Mantoux χαρακτηρίστηκε θετική σε διήθηση ≥15 mm. Ανθρωπομετρικές μετρήσεις (ύψος, βάρος) πραγματοποιήθηκαν, χρησιμοποιώντας πρότυπες μεθόδους. Συλλέχθηκαν ακόμα δεδομένα για την ηλικία, τον τόπο κατοικίας και το εκπαιδευτικό επίπεδο των οπλιτών.

ΑΠΟΤΕΛΕΣΜΑΤΑ Η μέση ηλικία των οπλιτών ήταν 23,2 (±2,8) έτη. Η επίπτωση της θετικής Mantoux ήταν 1,4% (52/3.684), ενώ η ανάλυση των δύο μεταβλητών που εφαρμόστηκε έδειξε ότι τα κοινωνικο-δημογραφικά χαρακτηριστικά δεν διέφεραν με την παρουσία θετικής Mantoux. Παρομοίως, στο μοντέλο πολυμεταβλητής γραμμικής παλινδρόμησης που χρησιμοποιήθηκε, τα κοινωνικο-δημογραφικά χαρακτηριστικά δεν συσχετίστηκαν με την παρουσία θετικής Mantoux.

ΣΥΜΠΕΡΑΣΜΑΤΑ Τα αποτελέσματα που προέκυψαν, φανερώνουν ότι η επίπτωση της θετικής Μantoux στον άρρενα νεανικό ελληνικό πληθυσμό είναι πολύ μικρή (1,4%) και ακολουθεί μια πτωτική τάση τα τελευταία 30 έτη, παρά την αθρόα εισροή οικονομικών μεταναστών από χώρες με υψηλά ποσοστά φυματίωσης.

Λέξεις ευρετηρίου: Δείκτης μάζας σώματος, Δερμοαντίδραση φυματίνης, Εκπαίδευση, Νεοσύλλεκτοι οπλίτες, Τόπος κατοικίας

References
3. ANONYMOUS. Diagnostic standards and classification of tuberculosis in adults and children. This official statement of the American Thoracic Society and the Centers for Disease Control and Prevention was adopted by the ATS Board of Directors, July 1999. This statement was endorsed by the Council of the Infectious Disease Society of America, September 1999. Am J Respir Crit Care Med 2000, 161:1376–1395

Corresponding author:
G. Michas, Department of Internal Medicine, General Hospital of Kalamata, Antikalamos, GR-241 00 Kalamata, Greece e-mail: gv.michas@gmail.com