A massive cystic splenic infarct in a patient with chronic lymphocytic leukemia
Appearance on contrast-enhanced sonography

Massive splenic infarct is a rare clinical entity, due to compromised blood flow in the spleen and occurs especially in the event of coagulopathy, hematological malignancy, endocarditis or other sources of embolization. The case is presented of a massive cystic splenic infarct in a patient with chronic lymphatic leukemia, in order to describe its contrast-enhanced sonographic features. Ultrasonography (US) confirmed the presence of a lesion measuring 13.5×10.6 cm, without the characteristics of a plain cyst, as it was hypoechoic but had well-defined borders within which there was amorphous material. The Doppler appearance showed no vascularization. After intravenous administration of contrast medium, the splenic parenchyma was enhanced in a homogenous manner, but the lesion remained as on the original US, with no enhancement at any phase.

CASE PRESENTATION

A 71-year-old male patient was admitted to the hospital for investigation of a fever of 38.6 °C of 3 days’ duration. His medical history included CLL, diagnosed 5 years earlier, and diabetes mellitus, hypertension and ischemic heart disease two years earlier.

Because of pain in the left upper quadrant of the abdomen with mild tenderness on palpation of the spleen, the patient underwent an abdominal computed tomography (CT), which revealed that the spleen was 22 cm in diameter, with a large hypodense lesion measuring 13.5×10.6 cm with septae, compatible with splenic infarct (fig. 1). Hepatomegaly and abdominal lymphadenopathy were also noted, as had been detected two months previously, on re-examination for CLL in the hematology department. At that time, no splenic infarct was present. Abdominal CT performed at the onset of the fever in another hospital showed a lesion thought to be a splenic abscess.

Two days after the second abdominal CT, and because of the discrepancy between the two CTs, the patient underwent contrast-enhanced sonography of the spleen for further evaluation of the splenic lesion. The basic ultrasound (US) confirmed the splenomegaly and a hypechoic lesion measuring 13.5×10.6 cm. Following intravenous administration of the contrast agent sulfur exafluoride microbubbles (SonoVue, Bracco), the splenic parenchyma showed homogenous enhancement, while the lesion remained without any enhancement (fig. 2A). With the use of the intravenous contrast agent, this lesion appeared wedge-shaped and well defined, but with no enhancing borders that would be characteristic of a splenic abscess. The absence of enhancement...
of the lesion after the administration of the contrast agent, along with the presence of amorphous material were compatible with a cystic splenic infarct with septae (fig. 2B).

The patient remained afebrile after the first two days of hospitalization. Blood cultures and evaluation for thrombophilia were negative. The splenic infarct was attributed to his underlying CLL, for which he had received no treatment. Splenomegaly due to CLL accounted for the splenic infarcts, which appeared to be responsible for the patient’s fever.

DISCUSSION

Splenomegaly itself can account for the occurrence of splenic infarcts. Patients with infectious mononucleosis, malaria and leishmaniasis may develop splenic infarcts, as well as patients with myelohyperplastic syndromes.\(^1\)–\(^4\)

Contrast-enhanced sonography is of great diagnostic value in various clinical situations for the differential diagnosis of splenomegaly, splenic infarcts, abscesses, tumors and injuries, functional asplenia and accessory spleen.\(^5\)–\(^7\)

It is noteworthy that Görg and colleagues, in their study of patients with pain in the left upper quadrant and splenic inhomogeneity, reported that contrast-enhanced sonography enabled visualization of splenic abnormalities in more than 50% of the patients; in this group, splenic infarction was the most common diagnosis.\(^5\) In the case presented here, contrast-enhanced sonography confirmed the findings of the abdominal CT performed in our hospital, and the patient did not have to undergo surgical intervention for a probable splenic abscess. The patient remains well 3 months after his hospitalization.

In conclusion, contrast-enhanced sonography may be a very useful tool in identifying splenic infarction, especially massive cystic infarcts as in this patient.

To our knowledge, this is the first report of massive cystic splenic infarct depicted by contrast-enhanced sonography.
References

1. www.uptodate.com

Corresponding author:
N.G. Vallianou, 5 Pyramidon street, GR-190 05 Marathonas, Greece
e-mail: natalia.vallianou@hotmail.com