CONTINUING MEDICAL EDUCATION ¿YNEXIZOMENH IATPIKH ЕКПAIDEYГH

Acid-Base Balance-Electrolyte Quiz Case 52

A 60 kg male (80 years) was admitted to the Internal Medicine Clinic with serum sodium $168 \mathrm{mEq} / \mathrm{L}$. Laboratory investigation showed serum glucose $120 \mathrm{mg} / \mathrm{dL}$, urea $110 \mathrm{mg} / \mathrm{dL}$, creatinine $1.8 \mathrm{mg} / \mathrm{dL}$ and potassium $4.2 \mathrm{mEq} / \mathrm{L} ; \mathrm{V}$ urine 1.2 L , urine sodium $25 \mathrm{mEq} / \mathrm{L}$, urine potassium $40 \mathrm{mEq} / \mathrm{L}$.

Which of the following treatment schedules should be used for the appropriate patient's management?
a. Normal saline $0.9 \%, 80 \mathrm{~mL} / \mathrm{h}$
b. Half normal saline $0.45 \%, 260 \mathrm{~mL} / \mathrm{h}$
c. Glucose solution $5 \%, 250 \mathrm{~mL} / \mathrm{h}$
d. Ringer lactate solution, $120 \mathrm{~mL} / \mathrm{h}$

The patient exhibited hypovolemic hypernatremia. Increased urea/creatinine ratio and low urine sodium suggest extracellular volume depletion. Thus, half-normal saline (0.45%) solution should be used.

The calculated water deficit is:

$$
\begin{aligned}
& \text { TBW }=\frac{(\text { Serum sodium }-1)}{140}=0.5 \times \text { body weight }(60 \mathrm{~kg}) \\
& \times\left(\frac{168}{140}-1\right)=6 \mathrm{~L}
\end{aligned}
$$

ARCHIVES OF HELLENIC MEDICINE 2015, 32(6):796

APXEIA EMAHNIKHE IATPIKHE 2015, 32(6):796

Ch. Rizos,
M. Elisaf
Department of Internal Medicine, Medical School, University of Ioannina, loannina, Greece

Taking into account that a decrease of serum sodium by 8 $\mathrm{mEq} / \mathrm{L}$ should be achieved within the next 24 hours, 1.7 L of water should be given (at a rate of $70 \mathrm{~mL} / \mathrm{h}$). Additionally, the insensible water losses ($40 \mathrm{~mL} / \mathrm{h}$), as well as the renal water losses should be taken into account. The latter can be estimated by the determination of electrolyte-free water clearance:
$C^{e}{ }_{H 2 O}=V$ urine $\times\left(\frac{\text { Urine sodium }+ \text { potassium }}{\text { Serum sodium }}\right)=480 \mathrm{~mL}(20 \mathrm{~mL} / \mathrm{h})$
Thus, the infusion rate of free water is: $70+40+20=130 \mathrm{~mL} / \mathrm{h}$ 1 L of hypotonic ($\mathrm{N} / 2$) saline solution is a combination of 500 mL of free water and 500 mL of isotonic saline. Thus, about $260 \mathrm{~mL} / \mathrm{h}$ of this solution must be administered to provide 130 mL / h of free water.

Corresponding author:

M. Elisaf, Department of Internal Medicine, Medical School, University of loannina, GR-451 10 loannina, Greece e-mail: egepi@cc.uoi.gr

